39 resultados para Gene Deletion

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have used interphase fluorescence in situ hybridization (IFISH) to detect trisomy 8, trisomy 9 and 20q deletion in circulating granulocytes from patients with polycythaemia vera (PV). Out of 64 PV patients, 15 (23%) exhibited an abnormality. Two patients had trisomy 9, three had trisomy 8 and 10 patients had hemizygous deletion of D20S108 (a locus in the 20q common deleted region). Aberrant nuclei ranged from 10% to 80% in these 15 cases. There was no correlation between the presence of a marker and sex, age, interval between presentation and IFISH analysis, neutrophil or platelet count or therapy. Conventional marrow cytogenetic karyotype results were available in 23 cases and there was concurrence between these and blood IFISH in 16 cases (13 normal and three with 20q/D20S108 deletion by both methods). Three patients with D20S108 deletion by IFISH were normal by previous marrow cytogenetic testing and four cases with 20q deletion by previous marrow cytogenetics had normal blood granulocytes according to IFISH. Thus, we confirm that trisomies 8 and 9 and deletion of 20q are diagnostically useful markers of PV. IFISH analysis of blood granulocytes is a practical method for detecting these markers, but as an adjunct to, not as a substitute for, conventional marrow cytogenetics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The deletion of the gene encoding the glycerol facilitator Fps1p was associated with an altered plasma membrane lipid composition in Saccharomyces cerevisiae. The S. cerevisiae fps1delta strain respectively contained 18 and 26% less ergosterol than the wild-type strain, at the whole-cell level and at the plasma membrane level. Other mutants with deficiencies in glycerol metabolism were studied to investigate any possible link between membrane ergosterol content and intracellular glycerol accumulation. In these mutants a modification in intracellular glycerol concentration, or in intra- to extracellular glycerol ratio was accompanied by a reduction in plasma membrane ergosterol content. However, there was no direct correlation between ergosterol content and intracellular glycerol concentration. Lipid composition influences the membrane permeability for solutes during adaptation of yeast cells to osmotic stress. In this study, ergosterol supplementation was shown to partially suppress the hypo-osmotic sensitivity phenotype of the fps1delta strain, leading to more efficient glycerol efflux, and improved survival. The erg-1 disruption mutant, which is unable to synthesise ergosterol, survived and recovered from the hypo-osmotic shock more successfully when the concentration of exogenously supplied ergosterol was increased. The results obtained suggest that a higher ergosterol content facilitates the flux of glycerol across the plasma membrane of S. cerevisiae cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The X-linked lymphoproliferative syndrome (XLP) is an inherited immuno-deficiency to Epstein-Barr virus infection that has been mapped to chromosome Xq25. Molecular analysis of XLP patients from ten different families identified a small interstitial constitutional deletion in 1 patient (XLP-D). This deletion, initially defined by a single marker, DF83, known to map to interval Xq24-q26.1, is nested within a previously reported and much larger deletion in another XLP patient (XLP-739). A cosmid minilibrary was constructed from a single mega-YAC and used to establish a contig encompassing the whole XLP-D deletion and a portion of the XLP-739 deletion. Based on this contig, the size of the XLP-D deletion can be estimated at 130 kb. The identification of this minimal deletion, within which at least a portion of the XLP gene is likely to reside, should greatly facilitate efforts in isolating the gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genome-scale metabolic models promise important insights into cell function. However, the definition of pathways and functional network modules within these models, and in the biochemical literature in general, is often based on intuitive reasoning. Although mathematical methods have been proposed to identify modules, which are defined as groups of reactions with correlated fluxes, there is a need for experimental verification. We show here that multivariate statistical analysis of the NMR-derived intra- and extracellular metabolite profiles of single-gene deletion mutants in specific metabolic pathways in the yeast Saccharomyces cerevisiae identified outliers whose profiles were markedly different from those of the other mutants in their respective pathways. Application of flux coupling analysis to a metabolic model of this yeast showed that the deleted gene in an outlying mutant encoded an enzyme that was not part of the same functional network module as the other enzymes in the pathway. We suggest that metabolomic methods such as this, which do not require any knowledge of how a gene deletion might perturb the metabolic network, provide an empirical method for validating and ultimately refining the predicted network structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Gremlin (grem1) is an antagonist of the bone morphogenetic protein family that plays a key role in limb bud development and kidney formation. There is a growing appreciation that altered grem1 expression may regulate the homeostatic constraints on damage responses in diseases such as diabetic nephropathy. RESEARCH DESIGN AND METHODS: Here we explored whether knockout mice heterozygous for grem1 gene deletion (grem1(+/-)) exhibit protection from the progression of diabetic kidney disease in a streptozotocin-induced model of type 1 diabetes. RESULTS: A marked elevation in grem1 expression was detected in the kidneys and particularly in kidney tubules of diabetic wild-type mice compared with those of littermate controls. In contrast, diabetic grem1(+/-) mice displayed a significant attenuation in grem1 expression at 6 months of diabetes compared with that in age- and sex-matched wild-type controls. Whereas the onset and induction of diabetes were similar between grem1(+/-) and wild-type mice, several indicators of diabetes-associated kidney damage such as increased glomerular basement membrane thickening and microalbuminuria were attenuated in grem1(+/-) mice compared with those in wild-type controls. Markers of renal damage such as fibronectin and connective tissue growth factor were elevated in diabetic wild-type but not in grem1(+/-) kidneys. Levels of pSmad1/5/8 decreased in wild-type but not in grem1(+/-) diabetic kidneys, suggesting that bone morphogenetic protein signaling may be maintained in the absence of grem1. CONCLUSIONS: These data identify grem1 as a potential modifier of renal injury in the context of diabetic kidney disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the genome sequence of Klebsiella pneumoniae subsp. pneumoniae Ecl8, a spontaneous streptomycin-resistant mutant of strain ECL4, derived from NCIB 418. K. pneumoniae Ecl8 has been shown to be genetically tractable for targeted gene deletion strategies and so provides a platform for in-depth analyses of this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus grows in one of two ways: either (i) predatorily [in a host-dependent (HD) manner], when it invades the periplasm of another Gram-negative bacterium, exporting into the prey co-ordinated waves of soluble enzymes using the prey cell contents for growth; or (ii) in a host-independent (HI) manner, when it grows (slowly) axenically in rich media. Periplasmic invasion potentially exposes B. bacteriovorus to extremes of pH and exposes the need to scavenge electron donors from prey electron transport components by synthesis of metalloenzymes. The twin-arginine transport system (Tat) in other bacteria transports folded metalloenzymes and the B. bacteriovorus genome encodes 21 potential Tat-transported substrates and Tat transporter proteins TatA1, TatA2 and TatBC. GFP tagging of the Tat signal peptide from Bd1802, a high-potential iron-sulfur protein (HiPIP), revealed it to be exported into the prey bacterium during predatory growth. Mutagenesis showed that the B. bacteriovorus tatA2 and tatC gene products are essential for both HI and HD growth, despite the fact that they partially complement (in SDS resistance assays) the corresponding mutations in Escherichia coli where neither TatA nor TatC are essential for life. The essentiality of B. bacteriovorus TatA2 was surprising given that the B. bacteriovorus genome encodes a second tatA homologue, tatA1. Transcription of tatA1 was found to be induced upon entry to the bdelloplast, and insertional inactivation of tatA1 showed that it significantly slowed the rates of both HI and HD growth. B. bacteriovorus is one of a few bacterial species that are reliant on a functional Tat system and where deletion of a single tatA1 gene causes a significant growth defect(s), despite the presence of its tatA2 homologue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus cells have a single polar flagellum whose helical pitch and diameter characteristically change near the midpoint, resulting in a tapered wave. There are six flagellin genes in the genome: fliC1 to fliC6. Accordingly, the flagellar filament is composed of several similar flagellin species. We have used knockout mutants of each gene and analyzed the mutational effects on the filament length and on the composition and localization of each flagellin species in the filament by electron microscopy and one- and two-dimensional polyacrylamide gel electrophoresis. The location and amounts of flagellins in a filament were determined to be as follows: a small amount of FliC3 at the proximal end, followed by a large amount of FliC5, a large amount of FliC1, a small amount of FliC2 in this order, and a large amount of FliC6 at the distal end. FliC4 was present at a low level, but the location was not determined. Filament lengths of newly born progeny cells increased during prolonged incubation in nutrient-deficient buffer. The newly formed part of the elongated filament was composed of mainly FliC6. Reverse transcription PCR analysis of flagellar gene expression over 5 days in buffer showed that fliC gene expression tailed off over 5 days in the wild-type cells, but in the fliC5 mutant, expression of the fliC2, fliC4, and fliC6 genes was elevated on day 5, suggesting that they may be expressed to compensate for the absence of a major component, FliC5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemizygous deletion of 17p (del(17p)) has been identified as a variable associated with poor prognosis in myeloma, although its impact in the context of thalidomide therapy is not well described. The clinical outcome of 85 myeloma patients with del(17p) treated in a clinical trial incorporating both conventional and thalidomide-based induction therapies was examined. The clinical impact of deletion, low expression, and mutation of TP53 was also determined. Patients with del(17p) did not have inferior response rates compared to patients without del(17p), but, despite this, del(17p) was associated with impaired overall survival (OS) (median OS 26.6 vs. 48.5 months, P <0.001). Within the del(17p) group, thalidomide induction therapy was associated with improved response rates compared to conventional therapy, but there was no impact on OS. Thalidomide maintenance was associated with impaired OS, although our analysis suggests that this effect may have been due to confounding variables. A minimally deleted region on 17p13.1 involving 17 genes was identified, of which only TP53 and SAT2 were underexpressed. TP53 was mutated in <1% in patients without del(17p) and in 27% of patients with del(17p). The higher TP53 mutation rate in samples with del(17p) suggests a role for TP53 in these clinical outcomes. In conclusion, del(17p) defined a patient group associated with short survival in myeloma, and although thalidomide induction therapy was associated with improved response rates, it did not impact OS, suggesting that alternative therapeutic strategies are required for this group. (C) 2011 Wiley-Liss, Inc.